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'FUZZY MODELS OF FIRST ORDER LANGUAGES
1

by A. o1 Nora and.G. GERLA in Napoli (Italy)

- 1. Introduction : s ' ‘ S ,

In order to give a general approach to. fuzzy set theory, we utilize the concepts of
generahzed algebra and realization (in this paper we call them valuation structure and
- fuzzy model, respectively) given by H. Rastowa and R.Sikorski in [13], [15] and °
others papers. Namely we treat the valuation structures of a given type and the fuzzy
models of a given first order language in a suitable categorial setting and we, prove
that these categories have direct products. Also we define and examine congruence
and quotient concepts for valuation structures and fuzzy models. Moreover, we prove
that direct product and quotient operations preserve the first order properties (see

* also [16]). Still a very general concept of quantifier enable us to propose new defini.
tions of fuzzy entropy (degree of fuzziness) for a fuzzy relation. Finally, by utilizing
the quotlent concept, we examine the question' of associating to a fuzzy model .# a

"~ suitable ““crisp version”, i.e. a classic model ' with the “same” first order properties

of .#. In order to 111ustrate by an example, the possible applications of the above
~-results, we refer constantly ourselves to the fuzzy algebras [14], [4], even if all the
resulfs hold for many other objects of investigation of fuzzy set theory. For example
they hold for the fres, ‘pure, left unitary, right unitary, unitary fuzay. subsemigroups.
“[71, [8], [10}, moreover for fuzzy graphs anid similarity relations [1,-1]

2 The category of the valuation structures

We denote by N the set of natural numbers and by N* the set N | {0}. A type for
a v%ﬁl “structure is a family of disjoint sets v = (@, Cy,Cy,...,C,, .. ). If .
G -4+ 8, the elements of § are called quantifiers, if T, + 8, the elements of C, are called
n-ary tonnectives. A valuation structure or ge")zeralized_alggbyd (s8e 113], T18]) "of type v
is a pair ¥~ = (V, I), where V is a set (the true values set) and I (the interpretation)
wap defined in @\ |J{C,| n € N} such that I associates

a) to every & € C, an n-ary operation ¢ = I(§) of V,

~b) to ex’rery quantifier § € @ a map ¢ = I(§) from a class D, of subsets of V to V;

- D, is called the domain of gq.
We.set Q@ = {1(G) |7e€@}, C, = {I@€)|¢eC,} and C = Y{C,| n e N}. We can also
denote ¥~ =-(V, I) by (V, C, @). In other words a valuation structure is determmed.
. by.an-erdinary algebraic structure (V, C) and, if @ + 0, by a set of infinitary’ opera
tions Q. A valuatxmture is complete if D, = P(V) for every g€ Q. .

If (V,I) and (V', I') are two _valuation structures of the same type, then a homo-
morphism from (V, I) to. (V’, I’) is a map k: ¥V — V' such that for every ¢ e C., 7@,
Vi,.. 0V, XeD,
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(21) k(G('IJl, e ’Un)) = C’(k(?)l), g '.'3 k(?),,)),
(2.2) k(X)e D, and k(X)) = ¢'(k(X)),
where ¢ = I(€), ¢/ = I'(E), ¢ = I(q), ¢ = I'(§).

It is obvious that the valuation structures of a given type v constitute a category
V() with respect the above defined homomorphisms. In the case @ = {3, v},
Co ={t,f}, C; = {~} and 0, = {v, A, >} there exist many interesting examples of
full subeategories of V(r). For example the categories of the Boolean, the Fukasiewicz
or the Heyting algebras, where I(V) and I(3) are infimum and supremum operators,
respectively. If C; = {~,[J}, we can obtain the categories of the modal algebras.
All these categories are a tool to found a semantic for the corresponding first order
logic. In the sequel we denote by %, the two elements Boolean algebra and by £,
the IiiaSiausicz algebra (V,, I.), where ¥V, is the real unit interval [0, 1] and -
L.(t) = 1, I(f) =0, I.(A) (z, y) = min (2, y), I.(v) (2, y) = max(z,y), LI.(~)(z) =
=1—u I(V) (M) =inf M, I.(3) (M) = sup M, for 2, y €[0,1] and M < [0, 1).

Let S be a set and ¥~ a valuation structure. An n-ary fuzzy relation or ¥ -relation
is any map r: 8" — V. An l-ary fuzzy relation is also named fuzzy subset or ¥ -subset
of 8. If ¥ is ordered and u € ¥, then C(u) = {{(2y,...,2,) eS8 |r(x,,..., z,) = u}
is called the w-cut of r. If ¥” is an ordered set with minimum 0 and maximum 1, then -
a ¥ -relation r such that r(x) € {0, 1} for every z € 8 is called crisp. Then we can iden-
tify the classical relations with the crisp relations via the characteristic functions. All
these definitions are obvious generalizations of those given in literaturé when 7is
the algebra Z,, [17] or a lattice [11]. The following proposition shows that the category
of the valuation structures of a given type has direct products.

Proposition 2.1. The category V(z) of the valuation structures of a given type v his
direct products. Namely, let (¥";),.; be a family of objects of V(z), where ¥", = (V,,I,) =
=(Vy, Ci, @), and let ¥ = (V,I) = (V, C, Q) be defined by ‘

(i) (V, C) equal to the direct product of {(V,, Cters
(i) D, ={Xc¥ |foreveryicd: p(X)e Dq'}? o
(i) g(X) = {q(pi(X))ies

where py;: V — V, is the i-projection, €@, q, = 1,(g), ¢ = I(@). Then ¥ is the direct”
product of the family {¥",>;.; with.respect to the family {PDics 0f homomorphisms,

Proof. It is obvious that p, is.a homomorphism from ¥~ to ¥”,. Let ¥~ be a valua- _
tion structare and, for every i € J, let k,: V' —» V; be a homomorphism. We have to
prove that there is a homomorphism k such that for every ¢ € J the following diagram
commutes:

!
~—

V'—k—>V
i\ l t
k N i 7
£

e

Define k: V' — V by setting k(v) = (k;(v));s for everzv e V'. Let ¢’ € Q" and X € D,,..
Then p,(k(X)) = k,(X} for every ieJ. This proves that %(X)e D,. Moreover
q(k(X)) = {G(@P:((X)ies = qulki(X)1es = {bilg (X))1er = E(g'(X)):
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3. Congruences and quotients of valuation structures

A congruence y of a valuation structure ¥~ = (V, C, @) is a congruence of the alge-
brate structure (V, O) compatible with the quantifiers if there are. This means that
for everygeQandX YeD,
(3.1)  [X], = [Y],=[¢X)], = [g(T)],
where [Z], = {[2], € V/y; | z€ Z} for every Z = V. The quotient of ¥~ by y is the

valuation structure ¥y =¥ /vy = (V’ Q,C) such that (V’, C") is the quotient of
(V, C) via p and, for every g eQ if ¢ = I'(G), then D, = {[X],| X € D,} and
(3.2) [X]w) = [¢(X)], for every X e D,.

The following proposition shows that the usual homomorphism theorems hold.

Proposition 3.1. Let ¥ = (V,C, Q) and let ¥ = (V', (", Q') be two valuation
structures and k: ¥ — ¥ a homomorphism. Then the relation
(33) w—{xer"lk = k(y)}
is a congruence relation of ¥, the kern of k. Conversely, if y 15 a congmence of ¥ and ¥’
the relative quotient, the map k: V — V' defined b

(3.4) k(x ) [}, foreveryxeV "a\j\ ﬁ.

is @ homomorphism whose kern is p. N\ - V""r

“The proof is as usual.

4. Fuzzy models

Now we will utilize the.valuation structures in order to give a generalized definition
of semantics (see [13], [15]). A (generalized) first order language is a first order language
(in the classical sense) with a type for a valuation structure, ie. a (generalized) first

* oder language is given by a system UF D mens {Bndmens @, {Cdmeny of disjoint sets.

For any m e N the elements of F, and R, will be called m-argument functors and
pred@caéeag respectively. We set F UEM, R = UR,,. Terms, open and closed formulas
are defined as usual. # denotes the set of all formulas, .# denotes the set off all closed
formulas. By #, we mean the set of all formutas whose free or bound variables are
in {x,,...,,} and we write x[z,, ..., x,] to denote that « belongs to %#,. A fuzzy
model or a realization for @ is a triple 4 = (D, V, I) such that D is a set (the domain),
V is a set (the waluation set) and I (the interprétation) is a map such that V together
the restriction of I to the type @ v (UC,) is a valuation structure, and [ associates

a) to every functor f € F,, an m-argument operation f = I{f) of D, “~ 4
' 10—

b) to every predicate 7 € R,, an m-ary V-relation r = I(F).A A

We set F,, = {I()|}eF,}, R, ={I(F|FeR,}, F=UF,, B=UR,. Observe
that a fuzzy model M is completely determined by the classical algebra A(#) = (D, F),
the valuation structure V(.#) and the set R of fuzzy relations. The valuation of the
formulas of @ with respect to 4 = (D, V, I) is defined as follows: If t(z,,...,2,)
denotes a term whose free variables are in {x,,...,x,} and d,, ..., d, € D, then the
value t{d,, . .., d,) of t in dy, .. .,d, with respect to A is defined as usual. Hfxel,,
then o{M, &[d,, . .., d,]), the value of & vn d,, . . ., &, with respect to, A is defined by
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() o, Tty by [dys e @y]) = r(tyldys ooy dyls oo s bpldy, e os dy]),

(]1) v(./{,é(ocl,..‘.,ocs) [d13""’dn]) =C(U(Vﬂ‘s“1£dlg""dn])"' 7”( “s[dl’;°',dn]))’ |

(]_ll) ’U(./ﬂ, qxhﬂ[dli J ’dn]) = Q({’U(ﬂ: ﬂ[dl’ d -'-7: dk-l: d: d-h+:1.’ o) K n] I d G‘D})
- for every fp,'seN*, reR, tel,, fy,...,1, terms, T PO . ﬁea?,,,v geq,
he{l , ). : ' ‘

Observe ‘that 1f V(#) is not complete then the valuation can be undefined for
some formula. If this is not the case the fuzzy model is called completely valued.

In the sequel we suppose that ¢, f e Uy, A € C, and that (V(.#), A, 0, 1) is a semi- -

" lattice with. universal bounds 0 and 1, where 0 = I(f), 1 = I(¢) and the interpretation
of A is still denoted by.aA. H «e.?, and- o(#,a[d,,...,d,]) =1 for every
dy,...,d, €D, then # is called a model of x. M is a model of a set S of formulas if
it is a model of & for every x € 8. Note that if the valuation structure is the two valued
boolean algebra %, , then the above definition gives the classical concept of semantics.

If the valuation structures are the Heyting, Lukasiewicz or modal algebras, we obtain

the semantics of the correspondmg first order logics. In all these cases it is supposed
that the quantifiers are interpreted as the sup and inf operator, respectively. But
several other interesting definitions of the quantifiers are possible. For example we
can interpret the universal quantifier V by the map ¢ defined by

(4.1) q(X).= {1 b ~ i
0 otherwise. : e e,
- Also we can interpret the existential quantifier 3 by o
1 if leX,

w2 i =/ {0 otherwise. , .o

In such a manner one obtains logics whose closed formulas are classically valued even
if non classical models are also admissible. Another interesting class of quantifiers is

defined in Section 5. The expression “‘fuzzy model” is better than ‘ realization” given -

in [13] because many objects of investigation of fuzzy set theory are fuzzy models in

the above sense. For example fuzzy algebras, free; pure, very pure; left unitary, right
unitary fuzzy semigroups are fuzzy models of suitable formulas. The same holds for

the fuzzy graphs and the similarity relations. As an example we examine the case of

the fazzy subalgebra.” Recall that a fuzzy subalgebra (see [4], [14]) is an L.subset
f: A = L of an algebra A, where L is the unitary semilattice with zero, such that

(4.3)  flhl@y, .. m) 2 @) AL A f(R,) : |

for every n-ary operation h of 4 and «,,...,z,€ 4. One proves that an L-subset
of A is a fuzzy subalgebra if and only if every cut is a subalgebra. Then to every fuzzy
subalgebra we can associate the family of subalgebras (C(u)),. - Observe that every
; (chara)cteristic function of a) subalgebra of 4 is a crisp fuzzy subalgebra, and con-

versely.
Proposmlon 4.1. Assume that & is a language such that - € C,, Ve (, R =

= {#}. Moreover suppose that the interpretation of — i3 an-operation i(x, y) ch that
W, y) = 1 zmphe.s < yand the interpretation of ¥ is @ map q such that q(X ) =1 im-

plies X = {1}. Then every fuzzy model of the set of formulus
(44) Vo, .. VE,(F@) A ATE,) o F(S@y - -5 T))

-

/
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with § e F,,, is a fuzzy algebra. Conversely every fuzzy algebm is @ model of this set of
formulas with respect a suitable interpretation. -

 Proof. The first part of proposition is obvious. For the second observe that every
fuzzy algebra g: A — L becomes a fuzzy model of % provided that we interpret 7
by g, ¢, f and A by 1, 0 and the semilattice operation A of L, resp., — by the operation
i: L x L -» L defined by :

1 if u 2w,

4.5 A =
e Yty 7) 0 otherwise,

and V- by (4.1). Such.a fuzzy model is a model of (4.4).

Observe that the classical models of (4.4) are characterized by an &lgebra A and
a subalgebra of A (the interpretation of 7).

5. Quantifiers and entropy

In the fuzzy set theory the entropy operators have been introduced in order to-give

a measure of the “degree of fuzziness™ of a fuzzy set (see [3], [3], [9]). Now we can
define several types of quantifiers that enable us to give such a measure. For example,
suppose that a suitable definition of equivalence and negation is given, that EeQ
and that E = I(E) is defined by
(5.1) B(X) = sup ( {v+—> ~viveX}), XgV.
Then, if x[z,] is a formula, we can assume the valuation of the formula Ez,x as a
measure of the degree of fuzziness or the entropy of the predicate corresponding to .
Obviously in a Boolean model all the predicates have zero entropy. We can also sub-
stitute Ex,x by the more expressive formula 3z,(x <> ~x). We can obtain other
examples of entropy by substltutmg the “contradiction” v+ ~v by others contra-
dictions, for example '

(52) H(X) = sup( {?JA~v|veX}), X

In such a manner different types of’ entropies are defined. For example 1f V(A)
is the Lukasiewicz algebra &, and v(#, x[d]) = % for a suitable d € D, then the en-
tropy computed by (5. 1) is equal to 1, while the entropy computed by (5.2) is equal

to .

P

6. The category of fuzzy models

In order to organize the class of the fuzzy models of a given language & in a cate-
gory F(#), we have to define the morphism concept. A morphism from a fuzzy model
M = (D, I) into a fuzzy model 4" = (D', I') is a pair (h, k) of homomorphisms from
A(M) inito A(A') and. from V(#) into V(') respectively, such that the following
diagram commutes ‘

R
~

Dn _’j_) D Rl

L

Vs v
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for every 7 € R,, where r = I(F), v = I'(f) and h(d,, ..., d,) is (h(d,), . . ., b(d,)) for
“every (dy,...,d,) e D" The product of two morphisms (h, k) and (#’, k') is defined
by (h, k) - (B, ') = (hR', kE’). ‘

If R=R, = {f},YVisin @ and — is in C, then an interesting subcategory of F(.%)
is the category of the fuzzy algebras of type £, i.e. the full subcategory of F(¥) whose
objects are the models of (4.4), where V and — are interpreted by (4.1) and (4.5),
respectively. '

A morphism (h, k) such that A and k are both monomorphisms, epimorphisms or -
isomorphisms is called monomorphism, epimorphism or isomorphism, respectively.
A morphism is elementary if

(6.2) o', a[bldy), . . ., M{d,)]) = k(v(M, aldy, . . ., d,]))

for every formula x € &, and d,, ..., d, € D. If (h, k) is an elementary monomor_ﬁhism,
M is called an elementary extension of .#. 1f h and k are the identity embedding, .# is
called an elementary submodel of 4'.

Now, we give a condition in order that a morphism is elementary.

Proposition 6.1. Let .# and .#' be completely valued fuzzy models and (h, k) a

morphism from M to #'. Moreover, assume that, for everyn e N*, x € £, i€ {1, ..., n},
geQandd,,...,d, eD,
(6.3) (', gz plh(dy), . . ., h(d)]) . .

= q’{’u(./”,, ﬁ[h(dl), s ony h(di._i), h(d), h(di+1), . s ey h(d")]) | d € D} .
Then (h, k) is elementary. ‘ ‘
Proof. We prove (6.2) by induction on the complexity of . Suppose that « is atomic,

ie. of type 7(ty,...,t,) with7e B, and ¢,, ..., ¢, terms. Since % is a homomorphism,
we have for every d,,...,d,eD and ¢ =1,...,p that t(k{d,),...,Rd,)) =
= h{t,(d,, ..., d,)), with obvious meaning of the symbols. Then, by the commutativity
of (4.1),
o' Tty - oo ty) [R(E), - - s B(@D]) = (IR, - - B(d)]) - - - tplh(dy), - - h{d,)])
= ""( (1[‘11:‘--: dal)s -« o (p[dl""5 d,1))
= k(r(t 1 P I RS N[ TP A
/ = k(o(M (t,,..., s .. d]).
Suppose that &« = ¢(«,y, ..., «,), then ‘ e
ot a[h(dy), .. ., h(@y)]) = (M, 05 [B(dy), ..., (d,)]), .., (M, o [H(dy), . . ., B(d,)]))
= ¢'(k(v(A 0‘1[d1, . d] k(o( M, xpldy, . - -, da])))
= kle(w(M,ady, ..., d,]), ..., (ﬂ, aldy, ... d, )]
= ko(A, x[dy, ..., dy])].

The proof for the quantifiers g € @ is analogous. ’ ' B

Proposition 6.2. Let & be completely valued and (h, k) a morphzém from M to ./l{ !
with h surjective. Then M’ is completely valued and (h, k) is elementary.

Proof. It suffices to repeat the proof of Proposmon 6.1. The unique difference is
that in this case we have additionally to prove that .#" is completely valued.

eI
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2 Direct products of fuazy models

. Now we will prove that the category F(_Qf) of the fuzzy models of & has direct
products

Proposltlon 1. The category F(£) has direct products Namely, the direct product
of a family {M,,.; of fuzzy models is the, futey model M such that A(AM) and V(M)
are the direct products of (A(M,) )ieJ and {V(H,) ),E,, respectively, and, for every 7 e R,,
v = I(7) is defined by r(d,, ..., = Ll 1o, B 0y for every dy = {d\>,;, ..
dy = {d>s € M, where v, = I (r)

Proof. Let p;: D — D, and p/: V> ¥V, be the i- prOJeetlons To. prove that (p:, D})
is a morphism, it suffices to observe that

Pir(dy, .o @) = p(Crddl, @) = T, L ) = ry(pydy), .. - py(d,))

Let M’ = (D', V', I') be any fuzzy model and for every i e J let (h,, k,) be a mor-
phism from .#’ to .//I Then it is immediate that the pair (k, k) defined by h(x) =
= {hi(x)) iy and k(v) = (k;(v)),; for every x € D' and v € V', is the desired morphism
from 4’ to . ; :

‘The following proposition is proved in [16].

-

Proposition 7.2. Let {M>; be a completely valued family of fuzzy models, then
the direct product M’ is completely valued and :

Az,/) ('/Il”‘x[dla-"’ n] =<v‘/ﬂi70‘[ 1""’d:;])>iel. 3
 for every formula « € &, and every d, = (d};;y, ..., 8y = {dFYsey € D.

~The following proposition shows that also the category of the fuzzy subalgebras
has direct products.

Proposition 7.3. The direct product of a family of fuzzy algebras is @ fuzzy algebm
i.e. tbe category of fuzzy algebras has direct products.

Proof It follows from Proposition 4.1 and Proposition 7.2.

Propos1t10n 7.4. Let M be a completely valued fuzzy model, J a set and M the direct
power-of>H with index set J. Then, forevery dy,...,d,eD and x € %,,

(13) o', aldy, ..., d)) = o(H, «d,, .. ,,])

where we have zdentzfzed the elements of A and V with the relative constant mafps In other
words, M' is an elementary extension of M.

Proof. Obvious.

8. Congruences and quotlents of fuzzy models '

A congruence of a fuzzy model M is a pair (6, y)) of congruences of A(A) and V(4#),

respectively, such that for every re B, and d,,...,d,,d1, .. s dyeD
8.1) d,=,4d,. .,d;,zod =>r(d1,.. yy) =, rdy, ..., dy).
The quotient #/(0, v) of .ﬁ“by (6, y; is the fuzzy model .#' such that. A(A') a,nd
V(#') are the quotients of A(.#) and V(.#) by 6 and v, re3pect1vely, and .
(il - - s [dplo) = [r(dy, . .., dy)],

22  Ztschr. f. math. Logik

4
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for every 7 € R, dy, ..., d, € D. Observe that the above defined congrﬁences are not
a generalization of the usual ones. As in the classical case, we can prove the homo-
morphism théorems. y '

Proposition 8.1. Let (h, k) be a morphism from J# ;50 ﬁ”, then the pair (0, ), where
(82) 0 ={(d,d)eD?|hd) =hd)}, v={ov)eV?|ko)=k)}

is a congruence of M, the kern of. (h, k). Conversely, if (6, y) is a congruence of A and
M is the relative quotient, then the pair (h, k) defined by h(d) = [d]s, k(v) = [v], for
everyde D and ve V, is an epimorphism whose kern is (6, ). . )

Proof. Tt is obvious that 6 and v are congruences of A(.#) and V{4#), respectively.
Let7eR,, dy,...,0,d1,...,d, €D and assume that d, =od1,...,d, =¢d,. Then "
hd,) = Md}), . . ., h(d,) = h(d,) and therefore, by the commutativity, :

By, -y dy)) = 7 (B(dy), -« - B(dy) = r(B(dY), . . ., Bdy)) = R(r(d}, . . ., dy)),

where r = I(F) and ¢ = I'(F). It follows that r(d,,...,d,) =,7(dy, ..., d,). This
proves that (6, y) is a congruence. Let (6, w) be a congruence, then it is immediate
that the maps h and k, defined by (8.3) are homomorphisms. Then, since

k('r(dla i i w dn)) a [T(dl yoer ey dn)]w = T’([dlle, » o sy [dn]ﬂ) = T’(k(dl)’ PEEG k(dn))a

the pair (h, k) is a morphism from # to .#'. It is obvious that the kern of (&, k) is

0, v). : :
Proposition 8.2. Let .# be completely valued and (0, y) a congruence of M. Then .
the relative quotient ' is completely valued and ' Lo

o( M, o[ Ts, - - -5 [dade]) = [0(A, aldy, .. do])], o
for every formula x € £, and dy, ..., d, € D.

Proof. It follows from Proposition 6.2 and Proposition 8.1.

Proposition 8.3. Ewvery quotient of fuzzy subalgebra is a fuzzy subalgebra.

Proof. It follows from Proposition 8.2 and Proposition 4.1.

Proposition 8.3 shows that in the categories of the fuzzy subalgebras of a given )
type 7 suitable definitions of congruence and quotient exist. i

9, Sharpened and crisp versions of a fuzzy model ' -

If 8 is the equality relation in D, (0, y) is a congruence of .# iff y is a congruence
of V(#). We write g to denote (6, y) and the relative quotient A is called a sharpened
version of #. If, in particular, V(M’) is the two elements Boolean algebra #,, then
M’ is a classical model and it is called a crisp version of .#. Then we obtain the crisp
versions of .# by suitable homomorphisms k: V(#) — %, or, equivalently, by suit-
able congruences of V(.#) with only two equivalence classes T, F.

Roughly speeking, to obtain a crisp version it suffices to identify a suitable set 7'
of truth values with 1 and its condplement F with 0.

Obviously, in order to find a crisp version of M it is necessary that V(M) have the
same type of #,. This is not very restrictive, indeed we can consider #, as a valuatioh
structure of a very large quantity of types. For example, if V(#) is a semilattice we
can consider #, as a semilattice. If the type of V(.#) has two different implications,
then we can interpret both these implications by the operation of implication in %,,

and so on.
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“The following proposition is a particular case of Proposition 8.2.
Proposition 9.1. If .# is a completely valued fuzzy ‘model and M’ a sharpened version
of M via v, then M’ is completely valued and for every o € %, and dy, ..., d, €D

9.1) o, aldy, ..., d,)) = (oM, &[dy, ..., d])],.

Thus in a sense the sharpened and crisp versions of a fuzzy model hive the same
first order properties of the fuzzy model. In particular it is interesting to observe that
every CI‘ISP version of a fuzzy algebra f: 4 — L is a classical model of (4.4), i.e. a sub-
algebra of 4.

Obviously it is possible that 4 has no sharpened or scrisp versions. Examples are
given by the following trivial proposition.

Proposition 9.2. If there exisis an algebraic equation which is valid in V(,//l ) and
fails in B ,, then there exists no crisp version of M.

Proof. It sufficies to observe that the congruences preserve the algebraic
equations:

As an example, if in »(.#) there exists v such that v = ~w, then there is no crisp
version of 4. This happens, for example, in the Lukasiewicz algebra #.. Indeed
~1 =1~} = 1. Now, there are various manners in order to avoid such inconve-
niences.

The first is to consider .#, if this is possible, as a fuzzy model valued in a suitable
substructure ¥ of V(.#) for which there exists the desired congruence. For example,
if # is a fuzzy model such that V(.#) = Z., but there exists a J > 0 such that all
the fuzzy predicates possess their values in V' = [0,4 — 6] [4 + 6, 1], then it is
immediate that we can consider .# as valued in V’. Moreover the map k: V' — {0, 1}
defined by setting k(x) = 0 if * £ } — 4 and k(zx) = 1 otherwise is an epimorphism
preserving the usual lattice operations and quantifiers. To this epimorphism corresponds
a classical model that is reasonable to consider as a crisp version of .#.

The second manner is to consider .# as a fuzzy model valued in a valuation structure
with a more little type, for example avoid of negation. In other words, we can require
that the congruence preserves only a part of the connectives and the quantifiers. In
this case the crigp versions of M verify only the first order properties of M expressed
in the corresponding sublanguage of #.

Finally we can proceeds as follows: We consider any map k: V — {0, 1} and suc-
cessively’ we give a new interpretation of those connectives and quantifiers that are
not preserved by k. In such a manner a new valuation structure ¥ is defined in V
in such a way that k: ¥ — 4%, is an epimorphism. Since it is possible to conSlﬂer M
as a fuzzy model valued in ¥, we consider the classical model associated to p) as a
erisp version of 4. 1f in V(.#) we have a semilattice operation A, then it is not too
restrictive to suppose that, for every u,ve V, k{u A v) = k(u) A k(v) and k(0) = 0,

k(1) = 1. Indeed this is equivalent to suppose that k is the characteristic function of
a proper filter . If the interpretation of —, ~,V are not compatible with &, then
we can give new interpretations by setting, for example

0 .if wueF and v ¢ F, .93' 0 ifue#,
®3) ) =\y i ez

(9.2) c(u, v} = {

1 cherw1se,
. o [l EXeF
' gy = 0 otherwise
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for every'u,ve V and X < V! In other words if V(.#) is a semilattice and & a filter '
of V(#), then, by new suitable mterpretatmne. of the connectives and quantifiers, we -
can define a crisp version of .#, the trisp version associated to the filter F. bl
To give an example of apphcatmn of such a type of technique, let .# be a fuzzy . .

algebra and F a filter of, V(.#). Then it is immediate that 4 is a model of ‘the for- ‘

mulas (4.4) with respect the interpretations (9.2) and (9.4). Then the crisp version .#" -
of # associated to & is a model of (4.4) and therefore a crisp fuzzy algebra. This means
that we can identify .#" with a suitable subalgebra of 4(4), namely the subalgebra.
{x € A(M) | r(x) € F}, where r = I(7). In particular, if w € V(#) and F = {ve V(4) 1"
v = u} is the principal filter generated by u, then we can identify the correspondent
crisp version with the cut {x € A(.#) | r(x) Z u}. This suggests the name of generalized =
cut for the subset {x € A(H) | r(x) e F}. :

In conclusion, we have proved the following trivial proposition that generalizes a
known property of fuzzy algebras.

Propos:tmn 9.3. If M is a fuzzy.algebra, then every crisp version associated to a filter
is @ fuzzy algebra. Equivalentely, every generalized cut of a fuzzy algebra is a subalgebra.

f
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